Communication

Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "Montre\#alones"

Elizabeth H. Krenske, K. N. Houk, Bruce A. Arndtsen, and Daniel J. St. Cyr
J. Am. Chem. Soc., 2008, 130 (31), 10052-10053 • DOI: 10.1021/ja802646f • Publication Date (Web): 11 July 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "Montréalones"

Elizabeth H. Krenske, ${ }^{\dagger}$ K. N. Houk, ${ }^{\star+\dagger}$ Bruce A. Arndtsen, ${ }^{\ddagger}$ and Daniel J. St. Cyr ${ }^{\ddagger}$
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, and Department of Chemistry, McGill University, Montreal, Quebec, H3A 2K6 Canada

Received April 10, 2008; E-mail: houk@chem.ucla.edu

A recently reported one-pot synthesis of pyrroles from phosphine, imine, and acid chloride precursors (Scheme 1) involves intermediates $\mathbf{1}$, which undergo cycloaddition reaction with loss of $\mathrm{R}_{3} \mathrm{P}=\mathrm{O} .{ }^{1}$

Intermediates 1 were designed to behave as cyclic 1,3-dipoles, related to Sydnones ${ }^{2,3}$ and Münchnones, ${ }^{4}$ but can alternatively be formulated as phosphonium ylides. Phosphonium ions are known to cyclize to phosphoranes when γ-alkoxide groups are present, ${ }^{5}$ and similar interactions involving γ-keto groups have also been invoked ${ }^{6}$ to explain the catalysis of certain aldol reactions by phosphines. Accordingly, $\mathbf{1}$ may potentially exist in either a cyclic form "cyc-1" or an acyclic form "acyc-1". Because the efficiencies of cycloadditions between $\mathbf{1}$ and $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Cl}) \mathrm{CN}$ depended markedly on the electronic and steric environment at phosphorus, their reactivity was postulated to be a function of the extent of $\boldsymbol{c y c} \mathbf{c} \mathbf{- 1}$ in the $\boldsymbol{c y c} \boldsymbol{c} \boldsymbol{a c y c}$ equilibrium. Best results were obtained with a PPh(catechyl) unit. However, beyond the suggestions posed by spectroscopic and synthetic evidence, the structural features of $\mathbf{1}$ have not been determined. To characterize these potentially versatile reagents, we therefore provide a computational study of the nature of the reactive species and their cycloaddition reactions.

Scheme 1

Calculations with a variety of methods using Gaussian 03^{7} and NWChem 5.0^{8} revealed that the structural features of the parent compound cyc-1a ($\mathrm{R}, \mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}$) are relatively insensitive to the theoretical method used for geometrical optimization (Table 1). Consistency was seen over a range of theoretical levels including B3LYP, M06-2X, MP2, and QCISD, with various basis sets. In most cases the $\mathrm{P} \cdots \mathrm{O}$ distance fell within the relatively narrow range $2.51-2.57 \AA$.
In keeping with experiment, cyclic and acyclic isomers were both identified as local minima for 1a. Geometries of cyc-1a and the lowest-energy conformer of $\boldsymbol{a c y c}$ - $\mathbf{1 a}$, at the B3LYP $/ 6-31+\mathrm{G}(\mathrm{d})$ level, are shown in Figure 1. The energy difference between cyc1a and acyc-1a is essentially invariant across the methods studied, the enthalpy difference being approximately $2-3 \mathrm{kcal} \mathrm{mol}^{-1}$ in favor of the cyclic form. ${ }^{9}$

[^0]Table 1. Geometrical and Energetic Features of cyc-1a

level of theory	$P \ldots 0$ (Å)	$\begin{gathered} \angle \mathrm{OPC} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \angle \mathrm{POC} \\ \left({ }^{\circ}\right) \end{gathered}$	av. \angle at C_{p} $\left({ }^{\circ}\right)^{a}$	$\underset{(\mathrm{kcal} / \mathrm{mol})}{\Delta H \mathrm{mcyc}-{ }^{2}{ }^{b}}$
B3LYP/6-31G(d)	2.52	78.1	99.5	116.3	-2.8
B3LYP/6-31+G(d)	2.55	77.5	99.3	116.5	-1.8
B3LYP/6-311+G(2df,p)	2.51	77.2	100.3	118.0	-3.1
B3LYP/cc-pVTZ	2.51	77.6	99.9	117.0	-2.7
M06-2X/6-31+G(d)	2.54	77.8	99.1	116.4	-1.7
MP2/6-31+G(d)	2.53	78.4	99.2	115.8	-2.1
QCISD/6-31G(d)	2.57	78.4	97.8	115.1	-2.1

${ }^{a}$ Average angle at ylidic carbon. ${ }^{b} \Delta H$ at 298.15 K.

Figure 1. Geometries of cyclic and open-chain isomers of $\mathbf{1 a}$ at the B3LYP/ 6-31+G(d) level.

Chart 1. B3LYP/6-31+G(d) Features of Model Compounds

The $\mathrm{P} \cdots \mathrm{O}$ interaction in $\boldsymbol{c y c} \boldsymbol{c}-\mathbf{1 a}$ is relatively weak. Comparison with the model compounds 2 and $\mathbf{3}$ (Chart 1) indicates that the $\mathrm{P} \cdots \mathrm{O}$ interaction in $\boldsymbol{c y c} \boldsymbol{c}-\mathbf{1 a}$ is too long to be considered a normal covalent bond. Although the $\mathrm{P} \cdots \mathrm{O}$ distance is considerably shorter than that in a complex of $\mathbf{4}$ with formamide (via O) (5) (viz. 3.38 \AA), the shortened $\mathrm{P} \cdots \mathrm{O}$ interaction provides small enthalpic benefit. ΔH for formation of $\mathbf{5}$ from its components is $-2.7 \mathrm{kcal} \mathrm{mol}^{-1}$.

The $\mathrm{P} \cdots \mathrm{O}$ interaction leads to a distorted trigonal bipyramidal geometry at phosphorus: the average of the three equatorial bond angles in $\boldsymbol{c y c} \mathbf{c}-1 \mathrm{a}$ is 116.1°. In contrast to the more traditional 1,3dipole, Münchnone 6 (which is planar), cyc-1a is nonplanar with an average angle at C_{P} of 116.5°. The bond lengths and bond angles in the PCNCO framework of $\boldsymbol{c y c} \boldsymbol{c}$-1a are quite similar to those of acyc-1a, except for the amide $\mathrm{C}-\mathrm{N}$ bond lengths, which are 1.34 and $1.37 \AA$, respectively, and the $\mathrm{C}-\mathrm{O}$ bond lengths, which are 1.25 and $1.22 \AA$. The amide unit in $\boldsymbol{c y c} \boldsymbol{c}$-1a possesses greater $\mathrm{C}=\mathrm{N}$

Figure 2. Geometries of substituted derivatives $\mathbf{1 b} \mathbf{- 1 e}$.
character than does the simple amide 7, the result of favorable interaction of the negative charge on O with the phosphonium group. In addition, the $\mathrm{P}-\mathrm{C}$ bond length in $\mathbf{1 a}$ is almost identical to that in ylide 4. Therefore, species 1a is best regarded as an acylamino-phosphonium ylide, the cyclic conformer of which is stabilized by a weak $\mathrm{P} \cdots \mathrm{O}$ interaction.

Experimental results have suggested that the nature of the phosphorus substituents significantly influences the ability of $\mathbf{1}$ to undergo cycloaddition. ${ }^{1}$ These influences were modeled by derivatives incorporating $\mathrm{PMe}_{3}, \mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{CH}$, and PPh (catechyl) units ($\mathbf{1 b} \mathbf{- 1 e}$). Geometries of the cyclic forms of these species are shown in Figure 2.

In the PMe_{3} derivative $\boldsymbol{c y c} \mathbf{- 1 b}$, the $\mathrm{P} \cdots \mathrm{O}$ interaction is $0.5 \AA$ longer than in cyc-1a. Electron donation from the Me groups is likely to contribute to this long P \cdots O distance, but steric effects must also be considered since the two closest $\mathrm{O} \cdots \mathrm{H}$ contacts involving the PR_{3} unit are $0.1-0.3 \AA$ shorter than in cyc-1a. Cyc$\mathbf{1 b}$ is only $0.4 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable (ΔH) than the lowest-energy conformer of acyc-1b.
For the PPh_{3} derivative 1c, the $\mathrm{P} \cdots \mathrm{O}$ interaction is essentially nonexistent. The most "cyclic" isomer has a $\mathrm{P} \cdots \mathrm{O}$ distance of 3.92 \AA and is now $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the lowest-energy acyclic geometry. Conversely, incorporation of electron-withdrawing P -substituents strengthens the $\mathrm{P}-\mathrm{O}$ interaction. $\boldsymbol{C y c} \boldsymbol{c} \mathbf{1 d}$ has a $\mathrm{P} \cdots \mathrm{O}$ distance of $2.00 \AA$. The PPh (catechyl) derivative $\boldsymbol{c y c} \boldsymbol{c}-\mathbf{e}$ has two isomers differing in the stereochemistry at phosphorus; when the axial position of the phosphorus trigonal bipyramid is occupied by the Ph group, the $\mathrm{P} \cdots \mathrm{O}$ interaction is long ($2.93 \AA$), but when one of the catechol oxygens occupies the axial position, the $\mathrm{P} \cdots \mathrm{O}$ interaction is much shorter ($1.97 \AA$). The shorter $\mathrm{P} \cdots \mathrm{O}$ interactions in $\boldsymbol{c y c} \mathbf{c} \mathbf{- 1 d}$ and $\mathrm{O}-\mathrm{axial} \boldsymbol{c y c} \mathbf{c} \mathbf{1 e}$ are not, however, associated with any increase in stability. $\boldsymbol{C y c} \boldsymbol{c} \mathbf{1 d}$ is $1.5 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than its acyclic form, while O -axial $\mathbf{c y c}-1 \mathrm{e}$ is $0.6 \mathrm{kcal} \mathrm{mol}^{-1}$ higher

Figure 3. Transition state for cycloaddition of cyc-1a with ethylene.
in energy than the Ph -axial isomer and $2.6 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than the most stable acyclic isomer. ${ }^{10}$

These data suggest that a large contribution of $\boldsymbol{c y c} \boldsymbol{c} \mathbf{- 1}$ to the $\boldsymbol{c y c}$ -$\mathbf{1}-\boldsymbol{a c y c} \mathbf{- 1}$ equilibrium is not, in itself, the factor responsible for cycloaddition efficiency. In order to probe this, the transition states for the cycloadditions of $\mathbf{1 a}, \mathbf{1} \mathbf{c}$, and $\mathbf{1 e}$ with ethylene were computed. The parent cyc-1a (Figure 3) displays a concerted, moderately asynchronous transition structure ($\Delta H^{\ddagger}=22.8 \mathrm{kcal}$ mol^{-1}), in which the bond to the carbonyl carbon is more developed ($2.17 \AA$) than the bond to the ylidic carbon $(2.37 \AA) . \boldsymbol{C y c}-1 \mathbf{c}$ and the Ph -axial and O -axial isomers of $\boldsymbol{c y c} \boldsymbol{c}-1 \mathrm{e}$ also display concerted asynchronous transition structures, with activation enthalpies of $31.7,32.0$, and $16.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. These barriers parallel the results of experiments using $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Cl}) \mathrm{CN}$ as the dipolarophile, ${ }^{1}$ which indicated that a PPh_{3} unit was ineffective in promoting cycloaddition (when $\mathrm{R}^{1}, \mathrm{R}^{3}=$ Tol and $\mathrm{R}^{2}=\mathrm{Bn}$), whereas PPh (catechyl) gave a 95% yield of the pyrrole in 30 min at $23^{\circ} \mathrm{C}$. The activation barriers follow the same trend as the energies to distort the dipoles to their TS geometries. ${ }^{11}$ During cycloaddition, the dipole undergoes a contraction of the $\mathrm{P}-\mathrm{O}$ distance, as well as the formation of two new $\mathrm{C}-\mathrm{C}$ bonds. The barriers correlate with the change in $\mathrm{P}-\mathrm{O}$ distance on going from reactant to TS . Cycloaddition is most facile when the $\mathrm{P}-\mathrm{O}$ interaction is already well-developed in the substrate (e.g., O-axial cyc-1e).

A concerted mechanism is understood to operate in the reactions of Münchnones with alkynes. ${ }^{12}$ However, for $\mathbf{1}$, multistep mechanisms may occur, depending on electronic effects. These mechanisms and reaction regioselectivities are under investigation.

Acknowledgment. We thank the National Science Foundation (K.N.H.) and the Australian-American Fulbright Commission (E.H.K.) for generous financial support.

Supporting Information Available: Total energies at various levels of theory for $\boldsymbol{c y c} \boldsymbol{c}$-1a and $\boldsymbol{a c y c}$-1a; B3LYP/6-31+G(d) geometries for all species; and complete citations for refs 7 and 8 . This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) St. Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366.
(2) Earl, J. C.; Mackney, A. W. J. Chem. Soc. 1935, 899.
(3) Baker, W.; Ollis, W. D. O. Rev. Chem. Soc. 1957, 1, 15.
(4) Huisgen, R.; Gotthardt, H.; Bayer, H. O.; Schaefer, F. C. Angew. Chem., Int. Ed. Engl. 1964, 3, 136.
(5) (a) Ramirez, F.; Madan, O. P.; Heller, S. R. J. Am. Chem. Soc. 1965, 87, 731. (b) Bentrude, W. G.; Johnson, W. D.; Khan, W. A. J. Am. Chem. Soc. 1972, 94, 923. (c) Castelijns, M. M. C. F.; Schipper, P.; van Aken, D.; Buck, H. M. J. Org. Chem. 1981, 46, 47.
(6) Thalji, R. K.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 16778.
(7) Frisch, M. J. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(8) Bylaska, E. J. NWChem, version 5.0; Pacific Northwest National Laboratory: Richland, WA, 2006.
(9) The free-energy difference is similar, being $1-2 \mathrm{kcal} \mathrm{mol}^{-1}$ in most cases.
(10) X-ray data on derivatives of $\mathbf{1}$ show an acyc structure for $\mathrm{PR}_{3}=\mathrm{PPh}_{3}$ and a cyc structure for PPh (catechyl) (Arndtsen and St. Cyr, unpublished data).
(11) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646.
(12) Knorr, R.; Huisgen, R.; Staudinger, G. K. Chem. Ber. 1970, 103, 2639-2646.

JA802646F

[^0]: ${ }^{\dagger}$ UCLA.
 ${ }^{*}$ McGill University.

